

RHIC Spin Flipper Commissioning

M. Bai, M. Brennan, C. Dawson, Y. Makdisi, P. Oddo, C. Pai, P. Pile, P. Rosas, T. Roser

- Can only turn DC dipoles to 1000A with two opposite bumps at Q4 and Q3
- This limit is due to the physical aperture limit at Q4 and Q3

 Checked each AC dipole individually at 117.9A. And found out #4 wasn't able to be on at high current

• Close the first AC dipole bumps, #1-#2-#3

Close the first AC dipole bumps, #1-#2-#3

Measured momentum spread with 9MHz

Goal and Plan for coming APEX Session

- Decouple the machine
- Restore the settings in previous session
 - DC dipoles current 1000A
 - First ac dipole bump (closed)
- Turn on the second ac dipole bump (#3-#4-#5). Adjusting phase to close the bump
- Study the horizontal DSA response due to the ac dipole bumps
 - With DC dipole bump off
 - Measure H DSA response as function of one ac dipole bump size. 2nd ac dipole bump off
 - With 1st ac dipole bump at nominal setting, measure H DSA response with both ac dipole bump
 - with DC dipole bump on
 - Measure H DSA response with one ac dipole bump and then both ac dipole bump
 - then vary Qx to see the change of the H DSA

New Spin Flipper Design: Thomas

Rotating field strength: $2\psi_V \sin(2\psi_H) + orbit\ effect\ (non-rotating)$ = $1.00\ \psi_V\ for\ \psi_H = 15^\circ$

New:

Rotating field strength: $4\psi_{V}\sin(\psi_{H}/2)\sin(\psi_{H})$

$$= 0.14 \ \psi_V \ for \ \psi_H = 15^{\circ}$$

$$=0.52 \ \psi_{V} \ for \ \psi_{H} = 30^{\circ}$$

$$=1.08 \ \psi_{V} \ for \ \psi_{H} = 45^{\circ}$$